ISOLATION OF 30-NOR-21 α-HOPAN-22-ONE (ISOADIANTONE) FROM THE LICHEN *PLATISMATIA GLAUCA*

NORA HVEDING-BERGSETH, TORGER BRUUN and HELGE KJØSEN

Laboratory of Organic Chemistry, The Norwegian Institute of Technology, The University of Trondheim, N-7034 Trondheim-NTH, Norway

(Revised Received 14 January 1983)

Key Word Index—Platismatia glauca; lichen; triterpene; 30-nor-21 α -hopan-22-one; depside; chloroatranorin; chloroatranol; methyl β -orcinolcarboxylate; n-hydrocarbons.

Abstract—The nor-triterpene ketone, 30-nor- 21α -hopan-22-one, the depsides atranorin and chloroatranorin, and the aromatic compounds methyl β -orcinolcarboxylate and chloroatranol, as well as a series of normal, aliphatic hydrocarbons $(n-C_{14}-n-C_{33})$ have, been isolated from the lichen *Platismatia glauca*.

INTRODUCTION

Platismatia glauca (L.) W.Culb. and C.Culb.; also known as Cetraria glauca (L.) Ach., C. fallax (G.Web.) And., and Platysma glaucum (L.) Frege. [1]; a common foliose Norwegian lichen associated with conifer (spruce, pine) and birch trees, has previously been shown to contain atranorin and caperatic acid [2], arabitol and mannitol [3], choline, α-tocopherol and ergosterol [4]. So far no triterpene has been reported for this lichen.

RESULTS AND DISCUSSION

The neutral fraction of P. glauca gave after chromatography colourless crystals of the formula $C_{29}H_{48}O$ (m/z 412.3704 [M] $^+$, calculated 412.3705) and physical properties as given in Table 1. The mass spectrum also showed fragment ions at m/z 397 [M-15] $^+$, 369 [M-43] $^+$, 191 (base peak) and 43, indicating a nor-triterpene methyl ketone. The compound gave a mono-2,4-dinitrophenylhydrazone (mp 247–248°, m/z 592 [M] $^+$), while Huang-Minlon reduction gave a saturated hydrocarbon of elemental composition $C_{29}H_{50}$ (m/z 398.3912 [M] $^+$, calculated 398.3912) which showed ring C cleavage ions in the mass spectrum at m/z 191 (base peak) and 177.

1 $R_1 = COMe$, $R_2 = H$

2 $R_1 = H$, $R_2 = COMe$

The above data are in close agreement with those reported for 30-nor-21 α -hopan-22-one (isoadiantone, 1) obtained by acid or base catalysed stereomutation of 30-nor-21 β -hopan-22-one (adiantone [5-7]. Adiantone (2) has been isolated from the ferns Adiantum capillus veneris [6, 7] and Adiantum monochlamys [8]. However, in view of the reported facile acid and base catalysed isomerization of adiantone [5-7] and the use of base to remove acidic compounds from the extract, the isolated compound was suspected to be an artifact. A reisolation carefully avoiding both acid and base was, therefore, carried out.

Repeated chromatography of a hexane extract of P. glauca on Si gel, after precipitation of depsides and aromatic compounds from the initial toluene fractions, finally gave a homogeneous fraction which crystallized from methylene chloride-acetone. This compound had physical properties as given in Table 1 and an identical mass spectrum to that reported above. The compound isolated was, thus, identified as 30-nor- 21α -hopan-22-one (isoadiantone).

With the reservation that a possible isomerization of adiantone (2) into isoadiantone (1) may occur during extraction and/or subsequent chromatography on neutral Si gel, the above results seem to indicate that isoadiantone (1) is a natural constituent of *P. glauca*.

The initial hexane eluate from the Si gel of the P. glauca hexane extract, contained a mixture of normal saturated aliphatic hydrocarbons ranging from n- C_{14} to n- C_{33} with a maximum at C_{27} and an odd—even ratio of 1.96:1 as analysed by GC and co-injection with standards.

Fractional crystallizations of the precipitated material from the initial toluene fractions, gave a 3:2 mixture of atranorin and chloroatranorin, methyl β -orcinol carboxylate and chloroatranol.

Chloroatranol, a known acid and base degradation product of chloroatranorin [9, 10], has previously been isolated from commercial oakmoss (*Evernia prunastri*) extracts for the perfume industry [11], where it is considered an artifact of the isolation procedure.

Short Reports

¹H NMR methyl signals (δ) v_{max} 10β (cm^{-1}) Mp $[\alpha]_D$ 4α 48 88 14α 18α 22 Ref. Adiantone (2) 218° +83° 1700|| [5] 222-224° +81° [7] 2.10‡ [8] [5] 0.82 0.98 0.80 0.59 0.84 0.94 Isoadiantone (1) 230-231.5° -4° 1710|| 232-234° [7] $+2^{\circ}$ 0.81 0.96 0.79 0.96 0.70 0.84 2.13‡

0.95

0.98

0.78

0.80

0.95

0.96

0.68

0.70

Table 1. Physical constants of isoadianone from P. glauca (two preparations) compared with reported data for adiantone (2) and isoadiantone (1)

P. glauca*

P. glauca†

Of the above compounds, only atranorin has previously been reported as a constituent of P. glauca.

227-228°

234-235°

 $+1.5^{\circ}$

 $+2.3^{\circ}$

0.82

0.85

0.80

0.83

EXPERIMENTAL

Isolation. P. glauca (from Picea abies; det. T. Tønsberg, Botany Dept., The University of Trondheim) (1.5 kg air-dried) was extracted with hexane (41.) in a Soxhlet extractor for 48 hr. Evaporation of the solvent furnished a residue (29.2 g, 1.9%) which separated on Si gel (750 g) into fractions eluted with hexane (0.18 g, 0.8%), toluene (13.65 g, 46.7%), Et₂O (6.9 g, 23.7%) and MeOH (8.46 g, 29%).

The hexane fraction, when purified on TLC (Si gel, hexane), gave a mixture of normal, satd hydrocarbons as determined by GC: n- C_{14} (3.0%), n- C_{15} (2.7%), n- C_{16} (3.2%), n- C_{17} (3.6%), n- C_{18} (4.6%), n- C_{19} (5.2%), n- C_{20} (4.6%), n- C_{21} (7.0%), n- C_{22} 3.9%), n- C_{23} (9.0%), n- C_{24} (2.7%), n- C_{25} (8.8%), n- C_{26} (2.9%), n- C_{27} (10.5%), n- C_{28} (3.6%), n- C_{29} (8.3%), n- C_{30} (3.0%), n- C_{31} (7.3%), n- C_{32} (2.3%) and n- C_{33} (3.8%).

The toluene fraction gave a crystalline mixture of atranorin and chloroatranorin (923 mg) upon concn. Further concn gave a crop of methyl β -orcinol carboxylate (2.157 g) followed by a voluminous ppt (ca 7 g) of a mixture of aromatic compounds and aliphatic lipids, presumably was esters, as judged by the ¹H NMR spectrum. The residue (5.47 g), when rechromatographed on Si gel (750 g), gave a toluene fraction (3.2 g) which ppted a second crop of methyl β -orcinol carboxylate and chloroatranol upon concn, as well as a mixture of the two compounds. The mother liquor (0.873 g) was rechromatographed in two batches on a Merck Lobar Si gel column developed isocratically with 5% and 2.5% Et₂O in hexane, respectively. Two homogeneous fractions which co-chromatographed on TLC and GC, gave colourless crystals of isoadiantone (1) when crystallized from Me₂CO.

30-Nor- 21α -hopan-22-one (isoadiantone, 1, 45 mg). Recrystallized from CH_2Cl_2 -Me $_2CO$ and had physical properties as reported in Table 1. $1R \nu_{max}^{KBr} cm^{-1}$: 2945, 2865 (CH), 1702 (C

=O), 1465, 1445, (CH₂), 1380, 1365 and 1350 (Me); EIMS (probe, 70 eV) m/z (rel. int.): 412.3696 [M]⁺ (57), 397 [M - 15]⁺ (14), 369 [M - 43]⁺ (5), 206 (13), 191 (100), 177 (8), 149 (39) and 43 (64). Chloroatranol (85 mg). Recrystallized from Me₂CO and had mp 139-140.5°; IR ν KBr cm⁻¹: 3430 (OH), 1644 (C=O), 1460, 1288, 1205, 1182, 1095, 825 and 750; ¹H NMR (90 MHz, CDCl₃): δ 2.31 (s, Me), 6.32 (s, Ar-H), 6.40 (s, OH), 10.20 (s, CHO) and 11.08 (s, OH); EIMS (probe, 70 eV) m/z (rel. int.): 188.0048 (30, calc. for C₈H₇ ³⁷ClO₃, 186.0083) [M]⁺, 187 (38)/185 (100) [M - 1]⁺, 168 (5), 140 (13) and 121 (3).

2.08‡ 1705¶

2.13§ 1702¶

REFERENCES

- Culberson, C. F. (1969) Chemical and Botanical Guide to Lichen Products pp. 276, 482, 483. University of North Carolina Press, Chapel Hill.
- Culberson, W. L. and Culberson, C. F. (1968) Contrib. U.S. Natl. Herb. 34, 449.
- Lindberg, B., Misiorny, A. and Wachtmeister, C. A. (1953) Acta Chem. Scand. 7, 591.
- Da Silva, E. J. and Jensen, A. (1971) J. Sci. Food Agric. 22, 308
- Baddeley, G. V., Halsall, T. G. and Jones, R. H. R. (1961) J. Chem. Soc. 3891.
- Berti, G., Bottari, F., Marsili, A. and Mazzanti, L. (1960) Ric. Sci. 30, 2146.
- Berti, G. Bottari, F., Marsili, A., Lehn, J. M., Witz, P. and Ourisson, G. (1963) Tetrahedron Letters 1283.
- 8. Ageta, H., Iwata, K., Arai, Y., Tsuda, Y., Isobe, K. and Fukushima, S. (1966) Tetrahedron Letters 5679.
- 9. St. Pfau, A. (1934) Helv. Chim. Acta 17, 1319.
- 10. Koller, G. and Pöpl, K. (1934) Monatsh. Chem. 64, 126.
- ter Heide, R., Provatoroff, N., Traas, P. C., de Valios, P. J., van der Plasse, N., Wobben, H. J. and Timmer, R. (1975) J. Agric. Food Chem. 23, 950.

^{*} Akaline conditions.

[†] Neutral conditions.

[‡]At 60 MHz (CDCl₃).

[§]At 100 MHz (CDCl₃).

^{||}In CS2.

[¶]In KBr.